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Abstract 
  We present longitudinal and dipole wakefield 
simulations of TESLA and NLC collimator designs using 
a newly developed numerical algorithm, one that allows 
for the accurate calculation of the combination of very 
short bunches and very long, gently tapered structures.  
We demonstrate that the new algorithm is superior to the 
standard method of such calculations. For small taper 
angles our results agree with analytical formulas of 
Yokoya. In addition, we optimize the TESLA TTF2 
�step+taper� collimator design, and compare with 
collimator test measurements carried out at SLAC.  

 

INTRODUCTION 
  In future linear colliders, such as the TESLA [1] and the 
NLC project [2], in order to remove halo particles, the 
beams pass through a series of collimators before entering 
into collision. With the high current, low emittance beams 
envisioned, however, short-range transverse wakefields, 
generated when passing even slightly off-center through 
the collimator region, can spoil the projected emittance of 
the beams, and therefore the luminosity of the collider. 
Therefore, optimizing the collimator design to reduce 
wakefields is an important task for such projects. 
  A collider collimator can be described as a shallow 
transition from a beam pipe to a smaller aperture and then 
back again. Among the features making it difficult to find 
the wake for such structures are their finite wall 
conductivity, their complicated (non-cylindrically 
symmetric) geometry, and their long, gentle transitions. 
To simplify the calculation, cylindrically symmetric 
models are often used. In addition, for the purpose of 
design, the wakefields of such collimators are separated 
into two components, a resistive-wall component and a 
geometric component, where the geometric component is 
the wake assuming perfectly conducting walls [2]. 
  In this report we study the geometric component of the 
wake of cylindrically symmetric collider collimators, 
using a time domain numerical method to obtain the 
dipole, and also the longitudinal, wakes. A main difficulty 
in such calculations is that�due to the short bunch length 
and the long, shallow tapers of the collimator�grid 
dispersion and errors in geometry (e.g. a shallow taper 
ends up with stair steps) can arise.  
  Using a recently developed numerical approach [3], one 
that is able to model arbitrary, cylindrically symmetric 
boundaries faithfully and does not suffer from 
longitudinal dispersion, we are able to calculate accurately 
the short-range wakefields of TESLA and NLC collimator 
 
 
 

 designs. Our numerical results are compared to those of a 
standard time domain program, ABCI [4], to analytical 
estimates, and to measurements. Optimization of the 
TESLA TTF2 collimator geometry is also performed. 

 CALCULATIONS 
New Time-Domain Program 
  We will study the wakefield effects of collider 
collimators using the computer program ECHO. This 
program incorporates a newly developed finite difference, 
time-domain algorithm [3]. With a time step c∆t= ∆z 
(where c is the speed of light, t is time, and z is 
longitudinal position) allowed by the numerical stability 
condition, the algorithm has no longitudinal dispersion, 
allowing, with the use of a moving mesh, for the solution 
of very short bunches in very long structures. In addition, 
the �stair step� problem is avoided by means of the 
boundary approximation method of Ref. [5], a method 
that allows for accurate calculation in arbitrarily shaped, 
cylindrically symmetric structures. For longitudinal case 
(monopole mode) and staircase geometry approximation 
our scheme is reduced to the one presented in [6]. 
  In this report we focus on perfectly conducting, 
cylindrically symmetric collimators of the form sketched 
in Fig. 1. A tube of smaller radius b and length l is 
connected to beam pipes of larger radius a by symmetric 
tapers of angle α and length L. 
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Fig.1. Collimator geometry. 
 
  For the TESLA and NLC collimators the angle α is 
small. K. Yokoya has shown that, if α  and ρ= tan(α)ωb/c 
are small compared to 1 (ω is frequency), the longitudinal 
(monopole) and transverse (dipole) impedances of such 
structures are given by [7] 
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f(z) is the beam pipe radius variation, and Θ = Z0c/4π, 
with Z0 the free space impedance. Note that the two 
impedances are purely inductive and resistive, 
respectively. Table 1 gives sample parameters of TESLA 
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and NLC collimators and beams. The beams of charge Q 
have longitudinal distributions that are Gaussian, with rms 
length σ. Since the typical frequency excited ω~c/σ, we 
see that for TESLA ρ = 0.03, for NLC ρ = 0.04; therefore, 
in both cases we are in the small angle regime where 
Yokoya�s formulas apply. 

Table 1. Typical TESLA and NLC collimator and bunch 
properties. 
 α 

[mr] 
a 

[mm] 
b 

[mm] 
l 

[mm] 
Q 

[nC] 
σ 

[mm] 
TESLA 20 17.5 0.4 20 1. 0.3 
NLC 20 17.5 0.2 20 1. 0.1 

 
  In the time domain, Yokoya�s formulas imply that the 
longitudinal bunch wake, W||, will be proportional to the 
derivative of the bunch shape, and the transverse bunch 
wake, W⊥ , will be proportional to the bunch shape itself. 
We can quantify the time domain results by the average 
wake (κ || the loss factor or κ⊥  the kick factor) and the rms 
of the wake, Wrms. Note that Yokoya�s formulas imply: 

0κ =! and [for small b/a] )/(2 bσπακ =⊥ , (W||)rms≈ 
20.35 aα σ ,  (W⊥ )rms≈ 0.44α/(σb).  

Parameter Study 
  We begin our numerical study with the parameters in 
Table 1 for TESLA, and study the dependence of the 
results on α. Longitudinal results�κ || and (W||)rms�are 
shown in Fig. 2. The solid black curves give results 
obtained by ECHO with σ/h= 5 (h is the mesh size). The 
wake was calculated for angles down to 0.5oα = , in 
which case the total collimator length ~4 m. To test the 
accuracy of the numerical results, at sample points (α= 
5°, 10°, 20°), the mesh was made finer, and the result 
changed by less than 1%. Yokoya�s  formula  predicts   
κ ||= 0, and (W||)rms as given by the dot-dashed curve in the 
figure (the right plot). We see that the ECHO results 
approach the analytical solutions for small α; at 

10oα = the difference is  ~10%, at 5oα =  it is <3%. 
Finally, in Fig. 2, for comparison, we also display results 
obtained by the time-domain program, ABCI, for cases 
σ/h= 5, 10, 20 (gray curves); we see that for large α a 
much finer mesh is needed than by ECHO, and for small 
α the dependence is not correct.  
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Fig. 2. Longitudinal wake dependence on collimator 
angle. 

In Fig. 3 we plot the transverse results of ECHO�κ⊥  
and (W⊥ )rms�and compare to the analytical results, and 
we see that the numerical results have the correct small α 
behavior.  
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Fig. 3. Transverse wake dependence on collimator angle. 

 
In Fig. 4 we give the wakes themselves, W⊥  (left)  and  

W|| (right),  as o btained by ECHO, for the case  α = 20 
mrad and for several cases of σ/h (gray lines). We see that 
the numerical results approach the analytical curves 
(black dashes) as the mesh becomes finer.  
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Fig. 4. Transverse (left) and longitudinal (right) wakes 
when α= 20 mrad. 

 
  In Table 2 we give κ || and κ⊥ , for TESLA and NLC 

collimators with α = 20 mrad (near the nominal value), as 
obtained by ECHO. Also given are some results of ABCI 
(in parentheses) and the analytical asymptotic values. We 
clearly see that, for a given mesh, ECHO is much more 
accurate than ABCI. We note also that the absolute error 
for ECHO remains nearly unchanged as the length of the 
collimator is increased, unlike a program like ABCI, 
which requires an ever increasingly dense mesh. 

Table 2: Dependence of κ || and κ⊥  on mesh density when 
α = 20 mrad, as obtained by ECHO. ABCI results are 
given in parentheses. 

κ || [V/pC] κ⊥  [V/pC/mm] / hσ  
TESLA NLC TESLA NLC 

5 1.46 33.6 2.24 (135) 12.8 
10 1.42 32.9 1.91 (44.3) 11.2 
20 1.42 - 1.74 (13.4) 10.6 

Analytical 0 1.65 10 
 

 
 



Collimator Shape Optimization 
We have seen that reducing the taper angle decreases 

the wakefield effect. However, to obtain a significant 
effect, the types of collimator that we have studied so far 
may need to be meters long. An alternative solution is to 
consider a type of collimator that we call a �step+taper� 
collimator [8]. An example is shown in Fig. 5 where the 
parameters correspond to the TESLA TTF2 collimator 
[9]. We perform ECHO calculations for a very short 
bunch, 0.05σ = mm.  
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Fig. 5. Geometry of the TESLA TTF2 �step+taper� 
collimator. 

 
  Fig. 6 displays κ and Wrms, both longitudinal and 

transverse, as functions of collimator parameter d. As can 
be seen all functions have a minimum; the overall 
minimum can be taken to be d≈ 4.5 mm. 
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Fig. 6. Collimator geometry optimization. 

 
Comparison with Measurement 
    Finally, we compare ECHO numerical results with 
experimental data. At SLAC dedicated test chambers with 
collimators were constructed, installed in the SLAC linac, 
and then the transverse wakefield effect was measured 
with beam [10]. One chamber has a square collimator that 
we will assume has a wakefield that is similar to that of a 
round chamber. The  parameters are: α = 335 mrad, a= 19 
mm, b = 1.9 mm, l = 0 mm, and L = 51 mm. (Note that 
the taper angle α is much larger than will be the case in 
future colliders.) The measured, simulated, and analytical 
small angle asymptotic results are given in the Table 3. 

The ECHO results were checked by refining the mesh, 
and were found to be accurate to better than 1%. Note that 

0.55(1.02)ρ =  for the case 1.2(0.65)σ = mm, and it is 
therefore not surprising, in the latter case, that simulated 
and analytical results are in disagreement. Measurement 
and simulation agree well for the former case, but 
significantly disagree in the latter, shorter bunch case, a 
disagreement that is not understood. 

Table 3. SLAC collimator measurement comparison. 
Given are kick factors, κ⊥ , in units of V/pC/mm. 

σ  [mm] Measured Simulated Analytical 
1.2 1.2 ± 0.1 1.268 1.34  

0.65 1.4 ± 0.1 1.908 2.48  
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